A matematika eredete és története
A matematika tudományának kialakulásával, változásaival, vagyis a matematika történetével a tudománytörténet megfelelő ága, a matematikatörténet foglalkozik.
A matematika szó a görög nyelvből származik, a μάθημα (máthema) szó jelentése „tudomány, tudás”, a μαθηματικός (mathematikós) pedig azt jelenti, „tudásra vágyik”.
Gyakori álláspont, hogy történelmileg a matematika legalapvetőbb szabályai – amennyire ez a legkorábbi ismert matematikai tárgyú iratokból (pl. Ahmesz-papirusz) kiderül, gabonaszétosztási, űrmérték-, térfogat- és földterület-mérési, és hasonló egyszerű, a „való életből” vett, élelmezési, kereskedelmi, gazdasági jellegű problémák megoldásából adódik. Ez az állapot jellemző lehetett az ókori keletre. Mások hangsúlyozzák a korai matematika szakrális, vallásokkal, ill. filozófiákkal kapcsolatos jellegét is. Az ókorban, ha nem is mindig a mai teljességgel, de ismert volt rengeteg olyan eredmény (például az összeadás és szorzás fogalma, a törtek, a fontosabb geometriai idomok és több esetben ezek terület- és térfogat-képletei, a π szám közelítése, az algebrai egyenletekhez vezető gondolkodásmód stb.), melyet ma általános iskolákban tanítanak.
A görög civilizáció felemelkedésével a matematika óriási elméleti fejlődésen ment át anélkül, hogy gyakorlati alkalmazásaitól elfordultak volna. A folyamat az elméleti matematika kibontakozásával, a püthagoreusok számelméleti és Thalész geometriai felfedezéseivel indult (Kr. e. VI. szd.), viszont az egyik legnagyobb görög matematikust, Arkhimédészt az alkalmazott matematika legfontosabb korai alakjának tartjuk. A – mai szóval – irracionális számok püthagoreusok általi felfedezése hatalmas lökést adott a geometriai felfedezéseknek, s e folyamat végül Eukleidész híres tankönyvéhez, az Elemekhez vezetett; ugyanakkor a tiszta algebra fejlődését némileg visszavetette. A korszak (vagy annak vége) fontos és híres, megoldhatatlannak bizonyult problémái a kockakettőzés és a körnégyszögesítés, a korszak eredményei közt van még a kúpszeletek felfedezése.
E fényesként számon tartott korszak azzal ért véget, hogy a római civilizáció (gyakorta erőszakos módon) rátelepedett a görögre, és megszerezte az akkori művelt világ feletti uralmat. A matematika szempontjából a mediterrán római és az azt követő kontinentális korai keresztény civilizációt (kb. a reneszánsz idejéig) a stagnálás, ha nem a hanyatlás korszakának szokás tekinteni. Egy fontos kivétel azért akad: a skolasztikus keresztény műveltségben fontos szerepet kapott a logika. A korszak fontos lépése volt, hogy megkezdődött a negatív számok felfedezése és sok vitát kiváltó elismerése, illetve a római helyett az arab számírás legalább ennyi vitát kiváltó bevezetése.
Ha ezzel egyidőben keletebbre tekintünk, ott a helyzet kevésbé volt „rossz”: az arab, indiai és kínai matematika ebben az időben is virágzott, noha új felfedezések és más egyebek tekintetében egyik sem mérhető a görögökéhez. Az arabokat a geometrizáló görögökkel ellentétben inkább az algebra érdekelte, e tudományt magas szinten művelték.
Az európaiak önálló új eredményeket csak a reneszánsz idején értek el ismét: fontos probléma a harmadfokú egyenletek megoldása (ami a komplex számok fogalmának kialakulásához vezetett). A korszakban az ókori eredmények egy részét és általában az egész ókori kultúrát újrafelfedezték. A reneszánsz festők a perspektíva felfedezésével és vizsgálatával olyan tér-modellt alkottak, mely megalapozta a projektív geometria tizenkilencedik századi kialakulását.
Az európai matematika lassan ismét virágzásnak indult, a legfontosabb és legismertebb tudósok, Pierre Fermat, Rene Descartes, Blaise Pascal, Gottfried Wilhelm Leibniz, Isaac Newton, Leonhard Euler, Carl Friedrich Gauss és mások közreműködése által egészen a legújabb korig. A tizenkilencedik században óriási áttörést jelentett Georg Cantor halmazelmélete, mely alapjaiban változtatta meg a matematika arculatát, és a kutatás főirányát ismét az igen elvont elméleti síkra terelte. A huszadik században több évezredes, évszázados probléma oldódott meg (nemcsak az ókori kockakettőzés, körnégyszögesítés, és szögharmadolás, de pl. a Fermat-sejtés kérdése, vagy a valószínűség fogalmának matematikai megalapozása is). A huszadik századi matematika legfontosabb felfedezésének mégis a számítástechnika elméleti alapjainak kialakulását tarthatjuk (ebben kulcsszerepe volt a magyar származású Neumann Jánosnak), mely több elemző szerint egy új civilizációtípus, az információs társadalom kialakulásához fog vezetni.